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The purpose of this paper is two -fold. First, 

several results are presented for dealing with the 
most general of unequal probability sampling 
schemes. These results are considerably more gen- 
eral than presented in most texts, which generally 
only deal with the two special cases of unequal 
probability with and without replacement sampling 
schemes. The first stage of selection in the Cur- 
rent Population Survey as conducted by the U. S. 

Bureau of the Census provides a useful application 
of the general theory. Second, for the common 
within stratum sample size of n =2, this paper pro- 
poses a simple sample selection method that at- 
tempts to serve as a compromise between the two 
frequently opposing survey requirements of a small 
true variance and an unbiased and fairly stable 
estimate of that variance. Essentially, this new 
sampling scheme makes use of both the a- priori 
information used in the strata formation and a 
well -known unequal probability without replacement 
selection method. For the proposed scheme, two 
estimators of the population total are considered 
and compared both theoretically and empirically. 

I. GENERALIZED UNEQUAL PROBABILITY SAMPLING FROM 
A FINITE POPULATION 
As is well known, the popular unequal proba- 

bility with and without replacement sampling 
schemes are special cases of a much more general 
sampling scheme. In the following sections, the 
general theory associated with this general 
sampling scheme is developed. Please note, it is 

not claimed that each of the general results 
about to be presented are necessarily new and or- 
iginal; however, some of these results are at best 
not very well -known, while others are included for 
completeness. 

A. General Sampling Scheme. Suppose it is re- 
quired to select a sample for the purpose of es- 
timating some unknown population total. In gen- 

eral, the sampler is free to assign varying pro- 
babilities (including zero) to each possible 
sample configuration. Let there be N population 
units and suppose we wish to select a sample of 
size n, not necessarily disnct, units, where n 
is a fixed constant. The i population unit has 
a known variate (or measure of size) xi and an un- 
known variate (characteristic of interest) as- 

sociated with it (i= 1= 1,2,...,N). 
N N 

Let Y = E yi, X = E xi, and Pi= (i= 1,2,...,N). 
X 

We seek to estimate the unknown population total Y 
by selecting a sample of size n using some well - 
defined sampling scheme. 

Denote by t(i= 1,2,...,N) the number of times 
the ith unit is included in the chosen sample. A 
technique originally proposed by Cornfield [3], 

and used by both Cochran [2] and Raj [7] in their 

excellent .sampling tests when handling the special 
cases of with and without replacement sampling, is 

to treat the ti(i= 1,...,N) as the random variables 
rather than the yi(i= 1,2,...,n) where here y. is 

the value of the characteristic for the it" ?snit 

selected in sample. Raj [7] went slightly fur- 
ther and proposed using the "ti" technique for 
any general sample design. However, he did not 
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present the relevant results, as done here. The 
sampling scheme itself will uniquely determine the 
joint probability distribution of the t. As 
will be shown, for the quantities usually esti- 
mated, the joint distribution of the t. is not 
required. All that is generally required, are the 
two marginal probabilities, Pr(ti) and Pr(ti,t) 
for i #j, which permit the computation of E(ti)J 
and E(tit.). 

Clearly, since n is fixed, we have 
N N 

n = ti = E E(ti) and (1) 

N N 
Cov(ti,t.) = Coy ti, n - t. = - Cov(ti,t.)(2) 

J J 

The nature of the sampling scheme employed will 
determine the difficulty involved in computing 
E(ti) and Cov(ti,tj) which are assumed to exist. 

B. An Unbiased Estimator for Y. The general- 
ized estimator for Y considered here is: 

N ti n 

= (yi) E(t.) (3) 

The usual assumption that E(t.) >0 (i= 1,2,...,N) 
has been implicily made here.l If the variable 
of interest (y.) and the measures of size (x.) are 

highly correlaCed, then we generally desire 
E(t.) to be proprotional to x.(i= 1,2,...,N). Y 
is clearly an unbiased estimator for Y, since 

N E(t.) 

E(Y) = E (y.) - Y. 

There are many unbiased estimators, some possibly 
better and others worse, however, this paper ad- 
dresses only the above estimator, as it is the 

general extension of the classical with and with- 
out replacement (Horvitz -Thompson) [6] estimators. 
The variance of Y and two unbiased variance esti- 
mators will now be derived. 

CA The Variance of Y. The sampling variance 
of Y can be expressed in two different, though 
algebraically, equivalent,ways. The straight- 
forward expression for V(Y) is the quadratic form 
given by 

N N y. y. 

V(Y)=Cov(Y,Y) = E E(t ov(ti,tj) . (4) 

i j J 

Using (2) can be alternatively expressed as: 
N N 

V(Y) = - Cov(ti,tj)[Aylj], (5) 

i<j 

where Ay.. E(ti) E(tj) 

D. Two Unbiased Variance Estimators. Two 

different variance estimators are suggested by 

(4) and (5) whenever E(t.t.) >0 for all distinct 

pairs i #j. From (4), clear that an unx 

biased estimator of the sampling variance V(Y) 



is given by 
N N t.t. 

v1(Y) 

E(titj E(ti) 
N t. (y. 2 

+ 
E(t.) 

Cov(ti,ti) . (6) 

From (5) it is obvious that another unbiased 
estimator for V(Y) is 

N N 
v2(Y) Cov(ti,t.) (7) 

n n Cov(ti,t.) 

E(t.t.)l . (8) 

Only in special cases, such as with simple random 
sampling, are expressions (6) and (7) equivalent. 
It should be emphasized that (0 and (7) (or (8)) 

are unbiased estimators for V(Y) whenever 
E(titj) >0 for all distinct pairs of population 

units. If E(t.t.) =0 for any pair of units, then 
special assumptións are needed for an unbiased 
variance estimator to exist. 

E. Remark Concerning the Fixed Sample Size n. 
It should be clear from the above proofs that (3), 

(4), and (6) are valid for both fixed and random 
sample sizes, while (5) and (8) do require a 
fixed sample size, as assumed. Thus, some of the 
above theory is more general than initially 
stated. 

F. The Stability of the Variance Estimators. When 

sampling is without replacement, v(Y) becomes 

the familiar Horvitz -Thompson [6] variance esti- 
mator and v2(?) becomes the well -known Yates - 
Grundy [9] estimator. In this case, is 

generally the preferred estimator for V(1) be- 
cause it usually is much more stable than v1(?) 
and assumes negative values less often. Thus, it 
would seem reasonable to prefer v2(2) over 
in the general scheme. The sampling varianc of 

v2(Y) is quite cumbersome; howeverA when n =2, as 

is often the case in practice, v2(Y) involves 

only two sample units and the variance of v2(1) 
is conveniently obtained from (8) as 

N N [Cov(t.,t.)]2 

V[v2(Y)]= E E E(t.t.)3 
- [V(2)]2. (9) 

i<j 

G. Remark Concerning Multi -Stage Sampling. This 

section concludes with one final remark. It should 
be pointed out that the general theory just de- 

veloped is applicable in two quite different sit- 
uations. First of all, the general results are 

obviously valid when dealing with a single stage 
sample design. In addition, the general theory 

is also applicable, without modification, for any 
multi -stage sampling scheme, as long as the sam- 
ple size at the final stage is fixed. For exam- 

ple, in a multi -stage design, the y. are the 

variate values of the final stage units, and n 
is the fixed number of these final stage units 

selected for sample. Of course, for computa- 

tional reasons and because we often wish to know 
the variances at the various stages, alternative 
forms for the variance and its estimators showing 
the several stages of sampling would have to be 
developed as needed. 
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II. A USEFUL APPLICATION OF THE GENERAL THEORY 
While it's true that nearly all sample designs 

in practice are either with or without replace- 
ment designs, there does exist at least one on- 
going sample survey for which the general theory 
is quite helpful. The Current Population Survey 
(CPS) as designed by the U. S. Census Bureau pro- 
vides us with a useful application of the general 
theory. The CPS [8] is a stratified multi -stage 
general population survey of the nation. For 
simplicity we will focus only on the first stage 
of selection (for the non -certainty primary units, 
of course) as if it were the only stage of sampling 

A. The CPS First Stage Sampling Scheme. The 
sampling scheme used at the first stage of the 
CPS is certainly an unusual one, and actually re- 
sulted from combining two separate existing sur- 
veys. We can best describe the sampling scheme 
for the combined survey as follows. In a typical 
pair of strata (there are many stratum pairs), 
choose a sample of size n =3 by initially selecting 
one stratum at random (i.e., p =') and choosing 
two units with replacement from the chosen stratum 
using probabilities proportional to some measure 
of size. Then select one unit with probability 
proportional to size from the remaining stratum. 

B. A Model for Computing the Desired Marginal 
Probabilities and Expectations. We will now apply 
the general theory in a typical pair of strata. 
Let and denote the collection of units in 
stratum 1 and 2, respectively. For simplicity, 
assume the first N units are in S and the last 
N2 units are in S21(N= N1 +N2). Let1Xh and Yh 

(h =1,2) be the stratum totals of the known and un- 
known variates, respectively. Then, 

N N 
E xi and Yh (h =1,2). 

ieSh ieSh 

If the 
ith 

unit is in stratum h, define the within 
stratum selection probabilities as 

p! = 

h 

(ieSh) for h =1,2. 

One simple way to view the selection scheme is 
to imagine three independent draws from the N 
units, with one unit selected at each draw. The 
following three vectors of selection probabilities 
are used at the various draws: 

Draw 1: , 0,0,...,0) 
1 

Draw 2: (0,0,...,O,PN 
+1' +2' 

1 1 

( Pi P +2 
Draw 3: 

2 '2 

This or any other equivalent model of our sampling 
scheme allows us to easily compute the following 
marginal probabilities. For all i we have, 

Pr(t=1)=3 
2 

p - and Pr(t=2)=11i (p!)2. 

If the units i and j, i #j, are in the same stratum, 

we have 
Pr(ti =1, t. =1) = p! , 



while if units i and j are in different strata 
Pr(t.= 1,t. =1) = p! p!(1 -p!) + p! p!(1 -p!), and 

Pr(ti= =2) = pï(P)z. 

Using these probabilities the needed expectations 
are then easily arrived at. 

E(ti) = p! (all i), 

+ i=i 
E(tit.)= p! p i and j in same stratum (ij) 

i and j in different stratum, 

and 

iand 
4 i 

Cov(ti,t.) j in same stratum (i #j) 

i and j in different strata. 

These expectations can now be used in conjunction 
with the general results to derive explicit 
formulae for Y, V(Y), and v2(). 

III. A NEW COMPROMISE SELECTION METHOD FOR n =2 
SAMPLE UNITS PER STRATUM 

We now turn to a somewhat unrelated topic con- 
cerning efficient survey design. One of the 
simplest techniques for reducing the variance of 
an estimator is through effective stratification 
or universe partitioning. Frequently, due to 
the large amount of auxiliary information avail- 
able, stratification may be so effective that it 

is only necessary to select one sample unit per 
stratum. However, as is well known, samples of 
size one generally permit only a positively 
biased estimate of the variance. Consequently, 
if there is a pressing need for an unbiased var- 
iance estimator, the sampler generally redefines 
his strata by pairing existing strata and selec- 
ting a sample of size two from each new stratum 
pair. If the sample within each new stratum is 
chosen in such a way that all pairs of distinct 
universe units have a positive joint probability 
of occurrence into the sample, then an unbiased 
estimate of variance will exist. Unfortunately, 
there is generally a loss in the actual preci- 
sion obtained by the latter selection method 
when compared to the former. Appropriately, 
this decrease in precision associated with the 
latter method can sometimes be expressed as a 
simple function of the bias in the variance esti- 
mator used with the former method. 
This paper shortly proposes a new selection 

method for the within stratum sample size n =2. 

This selection scheme is motivated by the fre- 
quent need for an unbiased and stable estimate 
of the variance of Y, while at the same time sac- 

rificing as little as,possible in the actual 
sampling variance of Y, thus resulting in an ac- 
curate interval estimate for Y. The proposed 
method is a simple compromise between a strati- 
fied scheme where one unit is selected from each 
of two strata and, the well -known Durbin [4] 

selection scheme where two units are selected 
ignoring stratum boundaries. Two unbiased es- 
timators for Y will be proposed and evaluated, 
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along with their unbiased variance estimators. 
A. Stratified Scheme - Scheme 1. The strati- 

fied selection scheme will be referred to as 
Scheme 1. In Scheme 1, the within stratum prob- 

abilities, pi = xi (icSh,h =1 or 2), are used 

in the selection of the two sample units, one from 
each of the two strata. Denote by the usual 
unbiased estimator for Y using Schema 1. Using 
the earlier results, Ys is given by 

N t. 2 

Y = E y. = E 
pi h 

with variance 
N N 

N t. 

E y. 

1 Pi 

y. y. 

10 

V() = EEEp!p! - (11) 
s 

h i<j Pi Pj 

Although Scheme provides us with a precise point 
estimate of Y, the biased interval estimate it 
also provides may be unacceptable in certain 
applications. 

1. Special Techniques for Estimating the Vari- 
ance in Scheme 1. Since E(t.t.) =0 for all dis- 
tinct pairs in the same no unbiased vari- 
ance estimator exists. A biased, usually posi- 
tively biased, estimate of variance is obtainable 
by pairing or collapsing the two strata. Several 
interesting relationships between the bias in the 
estimate of variance, the actual variance, and 
the variance that would have been obtained if a 
sample of size n =2 had been selected from the N 
units with replacement will now be developed. 
Let Y be the estimator for Y using this with re- 
placement scheme. Applying the 

general theory yields 
N t. 

E 
(12) 

with variance 
N N 

V( ) 2p.p. - (13) 

which upon using (11) becomes 
N N 

V(YW) V(Ys) + 
2p 

- (14) 

i j 1 

S2 

Suppose ith unit is selected from stratum 1 

and the j unit is selected from stratum 2. 

y y 
Then Y = ; + 1 . An estimator for V(Y ) that 

s pi s 

is often used is 

v(Y;al,a2) = al 
y; 

- a2 (15) 

where a 
1 

and a2 are known constants and are not 
dependent upon the two units selected for sample. 
The expectation of v(2s;a1,a22)) is 

N N 

j 

S1 S2 (16) 

and the expectation of its square is 



4XX NN 
E[v(Ys;a1,a,)]2 - E E 4pip. 

i j 

x 
(ai 2pi 

a (17) 

Let us agree to choose al and a2 such that 

i 

= a = K. Then using (14), (16) be- 

comes 

Ev(Ys;a1,a2) = 2K2[V(Yw) - 11V(Ys)], (18) 

thus showing the bias alluded to earlier, and 
(17) becomes 

4X X N N 
E[v(s ;al,a2)]2 = K" X22 

i j 

S1 S2 

x - 
2pi 

(19) 

It would be desirable to choose K so that the 
mean squared error of v(Ys;al,a2), M[v(Ys;al,a2)] 

= V[v(Ys;al,a2)] + [Ev(Ys;a1,a2)- V(Ys)j2, is 

small. There are three sets of values for a1,a2, 
and K sometimes used in practice. 

(i) a1 , a2 , and K2 =1, in which 
1 2 

case 
Ev(Ys;a1,a2) - V(Ys) = 2[V(YW)- V(Ys)], (20) 

that is, the bias is equal to twice the (probable) 
reduction in the actual variance between the two 
schemes. 

(ii) a1 
2X1' a2 2X2' 

and KZ = 4X1X2' 

Since K2 >l, this choice of a and a generally 
gives a larger bias than does choice 1. 

2X2 

, 

2X1 4X1X2 
(iii) a1= a2= 

X 
, and K 2 = Since 

K2 <1 this choice of a1 and a2 generally gives a 
smiller bias than does choice 1. 

In the past, the Bureau has frequently used 
both the first and third sets of "a" weights 
(a1,a2) as given above. 

B. Durbin Scheme - Scheme 2. The Durbin [4] 

selection scheme will be referred to as Scheme 2. 

In Scheme 2, the basic selection probabilities, 
p. =x. , are used in conjunction with the Durbin 
lseIéction method in selecting two sample units 

from the two combined strata, completely ignoring 
the stratum boundaries. The Durbin selection 
scheme is a simple unequal probability without 
replacement selection scheme that selects n =2 
units per stratum, with inclusion probabilities 

and joint inclusion probabilities. 

- 
ij 

where X = 1 

2pipj 1 1 
(21) 

X 
N 

+ -2pj 1 

0-#3) 

p 
The Durbin + method of 

1 
. 

k 

selection has been shown [1,4] to possess several 
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highly desirable properties. This scheme is used 
at various stages of selection in several surveys 
at the Bureau. 

Let Y be the usual unbiased estimator for Y 
obtaineI from Scheme 2. The previous results 
show that Y is given by 

2 Y = X. 

with variance 
NN 

V(Y7 ) = 
' 

i <j i 

with and Tri. as given above. 

(22) 

(23) 

C. The New Compromise Scheme--Scheme 3. The 
new compromise selection method, referred to as 
Scheme 3, will now be given. This new scheme is 
a simple combination of Schemes 1 and 2, and is 
motivated by the desire for a selection scheme 
that possesses most of the optimum properties of 
these two schemes. Specifically, we desire the 
(expected) lower variance associated with Schemel 
and the unbiased and stable variance estimator 
accompanying Scheme 2. 

Let p be any constant satisfying <1. Then 
to apply the new compromise Scheme 3, simply 
choose either Scheme 1 or Scheme 2 with probabil- 
ities p and 1 -p, respectively, and proceed to 

select the sample according to the chosen scheme. 
In an actual survey situation, of course, 
Scheme 3 would be applied separately in each of 
many stratum- pairs. Using Scheme 3, two unbiased 
estimators for Y will be considered along with 
the variance and unbiased estimate of variance 
for each. The properties of these estimators and 
the considerations involved in the choice of p 
will be the subject of the remainder of this 
section. 

D. Overall Inclusion Probabilities for Scheme 3. 

Recall that Tr.= 2pi =2x. and are the Scheme 2 

(Durbin) inclusion and joint inclusion probabil- 
ities, respectively, and that 

x. 

p! 
= X 

(iESh) are the Scheme 1 inclusion pro- 
]. 

babilities. Then, if unit i is in stratum h 
(either h =1 or h =2 for every i), the Scheme 3 in- 
clusion probability is the function of p given by 

= + -p) (icSh,h =1 or 2). (24) 

The Scheme 3 joint inclusion probability for units 

i and j (i #j) is the following function of p: 

(p!pj)p + -p) if i,j in different 
strata 

-p) if i,j in same stratum. 

Since the Durbin method satisfies for 

all i #j, then if units i and j are inldilierent 

strata, Tr.. (p)>7... Therefore, it is clear that 

the effectlof Schi4e 3, when compared to Scheme 2, 

is to increase the joint occurrence of units in 
different strata, while decreasing the joint prob- 
ability of units in the same stratum,, 

E. Unconditional Estimator for Y -Yp. Under 

Scheme 3, an unconditional estimator for Y is the 
usual unbiased estimator, which is p dependent, 

(25) 



and is given by, N N 

= E (ti) (26) 
= E E [nn.-aij 1(P) i<7 

with variance 
where aij(p) is defined by 

N N 

V(Y p) = E E 

i 

where d.. (p) = (p) (P), and 

AY .-(P) (P) (ni(p) (p) 

Although probably not obvious from (27), V(Y 
is not necessarily monotone (decreasing or 
increasing) between p =0 and p =1. As we will soon 
see in the numerical examples, V(Y ) can either 
be monotone or have peaks and vallys between the 
two endpoints p =0 and p =1. Thus, one should have 
sufficient information in order to efficiently 
specify a value of p when applying Scheme 3. 

The unbiased Yates - Grundy estimator for V(Y ) is 

Yi Y 

p )(1 -p) if units i,j are in 
(27) different strata 

d..(p) 

v(Y) 
- (P) 

where the ith and units are the selected units. 

As can be seen from both the variance estimator 
v(Y ) in (28) and its variance, V[v(Y )] obtained 
obtained from (9), the stability of oRr variance 
estimator is dependent upon both p and the effec- 
tiveness of the stratification. Although we can't 
allow p to become too large (near unity), one 

would expect this scheme can tolerate larger 
values of p, if desirable, when stratification is 

effective than if it is not. This is because, al- 

though is small for units in the same 

stratum, so also is [Ay..(p)]2 whenever stratifi- 
cation is effective. 

In summary, to efficiently apply the uncondi- 
tional estimator Y under Scheme 3, one must at- 
tempt to find a va ?ue of p that jointly produces 
a small true variance for the estimator of Y, and, 

a stable variance estimator. The criterion used 
in this paper to quantify the preceding sentence 
is to find the value of p that minimizes 

(28) 

= V(Yp) + V[v(Y)p] (p #1). (29) 

A small value of Q should, in some sense, tend 

to indicate a "goon" interval estimate for Y, on 

the average. Other possible measures of the ac- 
curacy of our interval estimate would include dif- 
ferentially weighting each of components. 

The requirements of the survey and the statis- 
tician's subjective and objective judgments 
would ultimately determine these weights. 

F. Conditional Estimator for Y Under 

Scheme 3, a conditionally (conditioned on the ran- 
domly selected scheme) unbiased estimator for Y 
is given by 

if Scheme 1 is chosen 
s 

Y if Scheme 2 is chosen 

with variane 

Vp(2 ) = p V(Ys) + (1 -p) V(27) 

(30) 

(31) 

305 

(32) 

a-(P) 
(1 -p) if units i #j are in 

(33) 

same stratum 

and where Ay.. = . Note that although Yc 

does not depend upon p, its sampling distribution 
doe §. It is obvious from (31) that, unlike V(Y 
Vp(Yc) is monotone between p =0 and p =1, and 

further, V(Yf) and V(Ys) uniquely determine 

V (Y ). Thus, if stratification is effective, it 
that for all p, 

V1(Yc) = V(Y5) < Vp(Yc) < V(Y ) V0(Yc). The 

unbiased Yates - Grundy type estimator for Vp(Ye) 
7.n.-a.. (p) 

(Yc) 
(p) [Ayij ] 1) (34) 

The comments just made concerning the stability 
of v(Y ) hold here for vp(Yc) also. 

Therefore, when stratification is effective, 
should choose p as large as possible, subject to 
the constraint of a stable variance estimator. 
The suggested criterion, analogous to the earlier 
one, is to choose p such that 

= Vp(Yc) +V[vp(Yc)] (01) (35) 

is minimized. This optimum value of p should then 
provide us with an accurate interval estimate for 
Y. 

Scheme 1 is clearly a special case of Scheme 3 

and is obtained by simply letting p =1. For this 
case, both the conditional and the unconditional 
Scheme 3 estimators become equivalent to the 
stratified estimator Y , and thus, our criterion 
for measuing the accuracy of the interval esti- 
mates becomes 

Qs = V(2s) 41[v(2s;al,a2)] , (36) 

and is dependent upon the "a" weights chosen. 

IV. TWO NUMERICAL EXAMPLES USING HORVITZ THOMP- 
SON'S NATURAL POPULATION 

In this final section, two numerical examples are 
considered. For each illustration, the properties 
of Schemes 1,2, and 3 are explored. As the exam- 
ples show, the performance of any of the schemes 
significantly depend upon the population and the 
quality of the stratification. The first example 
demonstrates the significant gains obtained by ef- 
fective stratification, the associated overesti- 
mation of the variance, and how Scheme 3 can serve 
as an effective compromise between Schemes 1 and 
2. The second example is included to demonstrate 
the consequences of ineffective stratification. 

A. Horvitz and Thompson's Natural Population. 
In their 1952 paper, Horvitz and Thompson [6] in- 

vestigated a universe consisting of N =20 blocks 
in Ames, Iowa. The data is given in table 1, 

where the measures x. are tthe number of eye -esti- 
mated households on the i block and the y. are 
the actual number of households. The data has 



been reordered here for clarity. Many authors 
have subsequently tested their sampling schemes 
on this population. Table 2 is a summary of re- 
sults obtained by Horvitz and Thompson [6], 

Hartley and Rao [5], and Raj [7]. Two numerical 
examples dealing with Scheme 3 will be given. 

Table 1 

HORVITZ - THOMPSON NATURAL POPULATION 

Yi 
xi 

1 19 18 1.06 
2 9 9 1.00 
3 21 24 .88 

4 22 25 .88 

15 14 1.07 
6 18 18 1.00 
7 37 40 .93 

8 12 12 1.00 
9 27 27 1.00 

10 25 26 .96 

11 19 19 1.00 

12 12 12 1.00 
13 17 14 1.21 

14 14 12 1.17 

15 27 23 1.17 

16 20 17 1.18 
17 25 21 1.19 

18 35 24 1.46 

19 47 30 1.57 

20 13 9 1.44 

Y=434 X=394 

Table 2 

SUMMARY OF PREVIOUS RESULTS 

Sampling 
Scheme 

Variance 
of the 

Estimator 

Variance 
of Variance 
Estimator 

1. Simple Random 17,122 
Sampling 

2. Stratified Random; 7,873 
one element from each 
of two strata with 
equal probability' 

3. Equal Probability 10,224 

Systematic Sampling 
4. pps With Replacement 3,247 
5. First Horvitz -Thompson 3,095 

Scheme 

6. Second Horvitz- 3,075 
Thompson Scheme (Trps)3 

7. Systematic Trps 3,014 

NA = Not Available 

26,539 

NA 

NA 

4,611 
NA 

NA 

3,983 

'Stratum 1 consists of the 10 blocks with the 

largest measures of size (x. >19), with the smal- 
lest (x. <18) 10 blocks in stratum 2. 

2First sample unit selected with pps, second 
unit from remainder with equal probabilities. 

Original measures altered so as to obtain an ap- 

proximate Trps (i.e., = 2xi /X) scheme. 

3First samplee unit selected with pps, second 

measureshaltereef soeasetoolnoottain ansapprrooximate 
scheme. 
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B. Example 1 -First Stratification. In the first 
example, units 1 through 12 comprise stratum 1 and 
units 13 through 20 comprise stratum 2. From 
table 1 this would appear to be an effective 
stratum formation. We have N1 =12, N2 =8, X1 =244, 
X2 =150, Y1 =236, and Y2 =198. 

The results appear in tables 3a and 3b and are 
encouraging. In this example, the unconditional 
estimator yields excellent point and interval es- 
timates for any p satisfying .25<p <.65. In this 
case the precision obtained compares well with 
that of Scheme 1. We also see that V(Y ) behaves 
quite smoothly in this first stratification. As 
shown in table 3b, the bias in each of the Schemel 
variance estimators is probably intolerable to 
most. In fact, this bias is so sizeable that for 
nearly each value of p not too near unity, both 
the unconditional and the conditional estimators 
are superior to the Scheme 1 estimator when ap- 
plying the "Q" criterion. Finally, for each p, 
the unconditional estimator is always superior to 
the conditional estimator. 

C. Example 2- Second Stratification. The effec- 
tiveness of the stratification is an important 
issue, as this second and final example demon- 
strates. Horvitz and Thompson suggest strati- 
fying according to the measures of size (x.), with 
the 10 largest eye- estimated blocks in stratum 1 

and the 10 smallest in stratum 2. When sampling 
is with equal probabilities, this method of 
stratification has already been considered, as 
shown in table 2 (No. 2). In this case, there 
was a significant improvement compared to unre- 
stricted simple random sampling (table 2, No. 1). 

As we will see, such is not the case when com- 
paring stratified unequal probability sampling 
(using the strata definition just given) with 
(unrestricted) pps with replacement sampling 
(table 2, No. 4). Thus, in this example, all 
units with x. >19 (i= 3,4,7,9,10,11,15,17,18 and 19) 
are defined stratum 1, and all units with x. <18 

(i= 1,2,5,6,8,12,13,14,16, and 20) comprise stratum 
2. The summary totals are now N1= N2 =10, X1 =259, 
X =135, Y =285, and Y =149. 
2Inspection of the column in table 1 tend to 

indicate this second stratification is not very 
effective. The stratifie4 scheme yields consid- 

erably less precision (V(Y ) =4025) than either the 
Durbin scheme or pps with replacement sampling. 
Because the stratification was so poor, the pre- 
cision of both the conditional and the uncondi- 
tional estimators get steadily worse as 01)->1, 

although the unconditional estimator begins to dip 

back down at about p .4.75. The precision of both 
variance estimators become steadily worse as 
because the small joint inclusion probabilities 
are not being associated with small [ay..(P)]2, 
again due to poor stratifying. In addition, each 
of the three Scheme 1 variance estimators seri- 
ously underestimates (2438, 2739, and 2224) the 

actual variance, whereas when stratification is 

effective they are generally each overestimates 
of variance. Therefore, as this example indicates, 
the quality (or lack of quality) of the stratifi- 
cation is a crucial issue, and, in particular, 

stratifying only on the basis of size is certainly 
questionable. The tables showing the analysis for 

this second example can be obtained upon writing 
the author. 



TABLE 3a 

Horvitz -Thompson Population - First Stratification Results 

Scheme 3 

Unconditional Estimator Conditional Estimator 

V(Y) /V[v(Yp)] Vp (Yc) $[v 

p =0 (Durbin, Scheme 2) 3011 3990 7001 3011 3990 7001 

p =.10 2220 2809 5029 2791 3382 6173 

p =.25 1438 2042 3480 2463 2717 5180 

p =.50 896 2544 3440 1915 2516 4431 

p =.65 842 3356 4198 1586 3129 4715 

p =.75 853 4202 5055 1367 3963 5330 

p =.90 863 7147 8010 1038 6992 8030 

p =1 (Stratified, 819 819 

Scheme 1) 

TABLE 3b 

Horvitz -Thompson Population - First Stratification Results 

a1 a2 Ev6 s;a1,a2) M[v0 s;a1,a2)] Qs 

X1/X2 

2. X/2X 
X/2X 

1 2 

3. 2X2 
/X 2X1 /X 

5674 

6017 

5351 

6984 

7440 

6554 

7803 

8259 

7373 
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